Slit2 inhibits glioma cell invasion in the brain by suppression of Cdc42 activity.
نویسندگان
چکیده
Acquisition of insidious invasiveness by malignant glioma cells involves multiple genetic alterations in signaling pathways. Slit2, a chemorepulsive factor, controls cell migration of neuronal and glial cells during development and inhibits chemotaxic migration of various types of cells in vitro. However, the role of Slit2 in vitro remains controversial, and the biological significance of Slit2 expression in cancer cell invasion in vivo has not yet been determined. In the present study, we characterized the effects of Slit2 expression on the migration and invasion of invasive glioma cells in vitro and in vivo. By reverse transcriptase polymerase chain reaction (PCR) analyses, Slit2 was found to be expressed at lower levels in primary glioma specimens and invasive glioma cells compared with normal human brain cells and astrocytes. Ectopic expression of Slit2 or treatment with recombinant Slit2 on glioma cells attenuates cell migration and invasion through inhibition of Cdc42 activity in vitro. Cellular depletion of Robo1, a cognate receptor for Slit2, prevented Slit2 inhibition of Cdc42 activity and glioma cell migration. In vivo, expression of Slit2 by invasive SNB19 glioma cells markedly inhibited glioma cell infiltration into the brain of mice. Moreover, impediment of glioma cell invasion by Slit2 did not affect the expression of N-cadherin and beta-catenin in glioma cells. These results provide the first evidence demonstrating that Slit2-Robo1 inhibits glioma invasion through attenuating Cdc42 activity in vitro and in the brain. Understanding the mechanisms of Slit2-Robo1 inhibition of glioma cell invasion will foster new treatments for malignant gliomas.
منابع مشابه
miR-218 inhibits the migration and invasion of glioma U87 cells through the Slit2-Robo1 pathway
Malignant gliomas are the most common primary brain tumors in adults and are associated with the highest mortality rate. Glioma invasion is one of the most notable causes of the poor prognosis of this cancer. Preventing the invasive behavior of malignant glioma cells by altering effector molecules can significantly improve the prognosis of a patient. microRNAs (miRNAs) are small noncoding RNAs,...
متن کاملEMT related lncrnas’ as novel biomarkers in glioblastoma: a review article
Glioma is the most common type of brain tumor and according to the 2016 WHO classification, based on invasion level, it is divided into four categories. The most severe and invasive type is grade IV glioma or glioblastoma (GBM), which has a very poor prognosis and a survival rate of only 15 months. However, the molecular pathway of invasion in malignant glioma tumors has not yet been clearly el...
متن کاملCdc42 and the guanine nucleotide exchange factors Ect2 and trio mediate Fn14-induced migration and invasion of glioblastoma cells.
Malignant glioblastomas are characterized by their ability to infiltrate into normal brain. We previously reported that binding of the multifunctional cytokine TNF-like weak inducer of apoptosis (TWEAK) to its receptor fibroblast growth factor-inducible 14 (Fn14) induces glioblastoma cell invasion via Rac1 activation. Here, we show that Cdc42 plays an essential role in Fn14-mediated activation ...
متن کاملPTEN gene transfer suppresses the invasive potential of human malignant gliomas by regulating cell invasion-related molecules.
Loss of function of the tumor suppressor gene PTEN is more frequently encountered in high-grade malignant gliomas than in low-grade gliomas. High-grade gliomas are characterized by their extremely invasive behavior, suggesting that PTEN is one of the important regulators of cell motility and that alterations of its coding gene contribute to a much more invasive tumor cell phenotype. In order to...
متن کاملsrGAP1 mediates the migration inhibition effect of Slit2-Robo1 in colorectal cancer
BACKGROUND The neuronal guidance molecule Slit2 plays suppressive role in tumorigenesis and progression. We previously showed that Slit2-Robo1 inhibit cell migration in colorectal cancer (CRC). However, little is known about its downstream effectors in CRC. This study tries to identify whether the Slit-Robo Rho GTPase activating protein 1 (srGAP1) could mediate the inhibitory effect of Slit2-Ro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuro-oncology
دوره 11 6 شماره
صفحات -
تاریخ انتشار 2009